Genomewide Expression Analysis in Zebrafish mind bomb Alleles with Pancreas Defects of Different Severity Identifies Putative Notch Responsive Genes
نویسندگان
چکیده
BACKGROUND Notch signaling is an evolutionarily conserved developmental pathway. Zebrafish mind bomb (mib) mutants carry mutations on mib gene, which encodes a RING E3 ligase required for Notch activation via Delta/Jagged ubiquitylation and internalization. METHODOLOGY/PRINCIPAL FINDINGS We examined the mib mutants for defects in pancreas development using in situ hybridization and GFP expression analysis of pancreas-specific GFP lines, carried out the global gene expression profile analysis of three different mib mutant alleles and validated the microarray data using real-time PCR and fluorescent double in situ hybridization. Our study showed that the mib mutants have diminished exocrine pancreas and this defect was most severe in mib(ta52b) followed by mib(m132) and then mib(tfi91), which is consistent with the compromised Notch activity found in corresponding mib mutant alleles. Global expression profile analysis of mib mutants showed that there is a significant difference in gene expression profile of wt and three mib mutant alleles. There are 91 differentially expressed genes that are common to all three mib alleles. Through detailed analysis of microarray data, we have identified several previously characterized genes and some putative Notch-responsive genes involved in pancreas development. Moreover, results from real-time PCR and fluorescent double in situ hybridization were largely consistent with microarray data. CONCLUSIONS/SIGNIFICANCE This study provides, for the first time, a global gene expression profile in mib mutants generating useful genomic resources and providing an opportunity to identify the function of novel genes involved in Notch signaling and Notch-regulated developmental processes.
منابع مشابه
Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish.
Disruption of E3 ubiquitin ligase activity in immature zebrafish mind bomb mutants leads to a failure in Notch signaling, excessive numbers of neurons, and depletion of neural progenitor cells. This neurogenic phenotype is associated with defects in neural patterning and brain development. Because developmental brain abnormalities are recognized as an important feature of childhood neurological...
متن کاملNotch-responsive cells initiate the secondary transition in larval zebrafish pancreas
Zebrafish provide a highly versatile model in which to study vertebrate development. Many recent studies have elucidated early events in the organogenesis of the zebrafish pancreas; however, several aspects of early endocrine pancreas formation in the zebrafish are not homologous to the mammalian system. To better identify mechanisms of islet formation in the zebrafish, with true homology to th...
متن کاملDelta-Notch signalling and the patterning of sensory cell differentiation in the zebrafish ear: evidence from the mind bomb mutant.
Mechanosensory hair cells in the sensory patches of the vertebrate ear are interspersed among supporting cells, forming a fine-grained pattern of alternating cell types. Analogies with Drosophila mechanosensory bristle development suggest that this pattern could be generated through lateral inhibition mediated by Notch signalling. In the zebrafish ear rudiment, homologues of Notch are widely ex...
متن کاملMind bomb-2 is an E3 ligase for Notch ligand.
The zebrafish gene, mind bomb (mib), encodes a protein that positively regulates of the Delta-mediated Notch signaling. It interacts with the intracellular domain of Delta to promote its ubiquitination and endocytosis. In our search for the mouse homologue of zebrafish mind bomb, we cloned two homologues in the mouse genome: a mouse orthologue (mouse mib1) and a paralogue, named mind bomb-2 (mi...
متن کاملNotch inhibits Ptf1 function and acinar cell differentiation in developing mouse and zebrafish pancreas.
Notch signaling regulates cell fate decisions in a variety of adult and embryonic tissues, and represents a characteristic feature of exocrine pancreatic cancer. In developing mouse pancreas, targeted inactivation of Notch pathway components has defined a role for Notch in regulating early endocrine differentiation, but has been less informative with respect to a possible role for Notch in regu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS ONE
دوره 3 شماره
صفحات -
تاریخ انتشار 2008